Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum.
نویسندگان
چکیده
Biogenesis of secretory proteins requires their translocation into the endoplasmic reticulum (ER) through the Sec61 channel. Proteins that fail to fold are transported back into the cytosol and are degraded by proteasomes. For many substrates this retrograde transport is affected by mutations in the Sec61 channel, and can be promoted by ATP and the 19S regulatory particle of the proteasome, which binds directly to the Sec61 channel via its base. Here, we identify mutations in SEC61 which reduce proteasome binding to the channel, and demonstrate that proteasomes and ribosomes bind differently to cytosolic domains of the channel. We found that Sec63p and BiP coprecipitate with ER-associated proteasomes, but Sec63p does not contribute to proteasome binding to the ER. The 19S base contains six AAA-ATPase subunits (Rpt proteins) that have non-equivalent functions in proteasome-mediated protein turnover and form a hetero-hexamer. Mutations in the ATP-binding sites of individual Rpt proteins all reduced the affinity of 19S complexes for the ER, suggesting that the 19S base in the ATP-bound conformation docks at the Sec61 channel.
منابع مشابه
Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملProteasome 19S RP Binding to the Sec61 Channel Plays a Key Role in ERAD
Import of secretory proteins into the Endoplasmic Reticulum (ER) is an established function of the Sec61 channel. The contribution of the Sec61 channel to export of misfolded proteins from the ER for degradation by proteasomes is still controversial, but the proteasome 19S regulatory particle (RP) is necessary and sufficient for extraction of specific misfolded proteins from the ER, and binds d...
متن کاملThe protein translocation channel binds proteasomes to the endoplasmic reticulum membrane.
Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contai...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملA molecular study on the endoplasmic reticulum potassium channels in hepatocytes
Introduction: It has recently been suggested that the KATP channel subunits Kir6.x and BKCa channels exist in the endoplasmic reticulum of cardiomyocytes and neurons. Our previous studies showed the electrophysiological behavior of cation channels in the rough endoplasmic reticulum (RER) of rat hepatocytes. Therefore, we hypothesized that KATP channels and Ca2+-activated potassium channels m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 120 Pt 4 شماره
صفحات -
تاریخ انتشار 2007